Είστε εδώ

  1. Εκπαιδευτικό Προσωπικό
  2. » Ασημάκης Νικόλαος

Περιοδικά

Πρωτεύουσες καρτέλες

[1] Lainiotis D. G., Assimakis N. D., Katsikas S. K., “Fast and stable algorithm  for computing the principal square root of a complex matrix”,  Neural,  Parallel   and Scientific Computations, vol. 1, pp. 467-476, 1993.

[2] Lainiotis D. G., Assimakis N. D., Katsikas S. K., “New doubling algorithm for the discrete periodic Riccati equation”, Applied Mathematics and Computation, vol. 60, no. 2-3, pp.   265-283, 1994.

[3] Lainiotis D. G., Assimakis N. D., Katsikas S. K., “A new computationally effective algorithm for solving the discrete Riccati equation”, Journal of Mathematical Analysis and   Applications, vol. 186, no. 3, pp. 868-895, 1994.

[4] Lainiotis D. G., Assimakis N. D., Katsikas S. K., “Fast and numerically robust recursive algorithms for solving the discrete time Riccati equation: The case of nonsingular plant noise covariance matrix”, Neural, Parallel and Scientific Computations, vol. 3, no. 4, pp. 565-584, 1995.

[5] Assimakis N. D., “Optimal distributed Κalman filter”, Nonlinear Analysis, vol. 47/8, pp. 5367-5378, 2001 (special issue).

[6] Assimakis N., Roulis S., Lainiotis D., “Recursive solutions of the discrete time Riccati equation”, Neural, Parallel and Scientific Computations, vol. 11, pp. 343-350, 2003.

[7] Assimakis N. D., Psarakis E. Z., Lainiotis D. G., “Steady state Kalman filter: A new approach”, Neural, Parallel and Scientific Computations, vol. 11, pp. 485-490, 2003.

[8] Assimakis N., Roulis S., Lainiotis D., Triantafillidis M., “An interesting property of the doubling algorithm for solving the discrete time Riccati equation”, Nonlinear Studies, vol. 12, no. 4, pp. 337-343, 2005.

[9] Assimakis N. D., Roulis S., Lainiotis D. G., “Optimal distributed algorithms for the solution of the discrete time Riccati equation”, Nonlinear Studies, vol. 12, no. 4, pp. 381-390, 2005.

[10] Assimakis N., “A new algorithm for the steady state Kalman filter”, Neural, Parallel and Scientific Computations, vol. 14, no. 1, pp. 69-74, 2006.

[11] Kechriniotis A. I., Assimakis N. D., “Generalizations of the trapezoid inequalities based on a new mean value theorem for the remainder in Taylor’s formula”, Journal of Inequalities in Pure and Applied Mathematics (JIPAM), vol. 7, issue 3, art. 90, 2006.

[12] Kechriniotis A. I., Assimakis N. D., “On the inequality of the difference of two integral means and applications for pdfs”, Journal of Inequalities in Pure and Applied Mathematics (JIPAM), vol. 8, issue 1, art. 10, 2007.

[13] Assimakis N., Adam M., “Discrete time Kalman and Lainiotis filters comparison”, Int. Journal of Mathematical Analysis (IJMA), vol. 1, no. 13, pp. 635-659, 2007.

[14] Assimakis N., Kechriniotis A., Voliotis S., Tassis F., Kousteri M., “Analysis of the time invariant Kalman filter implementation via general Chandrasekhar algorithm”, International Journal of Signal and Imaging Systems Engineering (IJSISE), vol. 1, no. 1, pp. 51-57, 2008.

[15] Adam M., Assimakis N., Sanida F., “Algebraic solutions of the matrix equations X+ATX-1A=Q and X-ATX-1A=Q”, International Journal of Algebra, vol. 2, no. 11, pp. 501-518, 2008.

[16] Assimakis N., Sanida F., Adam M., “Recursive solutions of the matrix equations X+ATX-1A=Q and X-ATX-1A=Q”, Applied Mathematical Sciences, vol. 2, no. 38, pp. 1855-1872, 2008.

[17] Adam M., Assimakis N., “Periodic Kalman filter: Steady state from the beginning”, Journal of Mathematical Sciences: AdvancesandApplications, vol. 1, no. 3, pp. 505-520, 2008.

[18] Assimakis N., Adam M., “FIR implementation of the steady state Kalman filter”, International Journal of Signal and Imaging Systems Engineering (IJSISE), vol. 1, nos. 3/4, pp. 279-286, 2008.

[19] Assimakis N., Adam M., “Steady state Kalman filter for periodic models: A new approach”, International Journal of Contemporary Mathematical Sciences, vol. 4, no. 5, pp. 201-218, 2009.

[20] Assimakis N., “Optimal distributed Lainiotis filter”, Int. Journal of Math. Analysis, vol. 3, no. 22, pp. 1061-1080, 2009.

[21] Assimakis N., “Discrete time Riccati equation recursive multiple steps solutions”, Contemporary Engineering Sciences, vol. 2, no. 7, pp. 333-354, 2009.

[22] Assimakis N., Kotsos B., “A chaotic system controller”, Int. Journal of Math. Analysis, vol. 3, no. 29, pp. 1405-1411, 2009.

[23]Adam M., Assimakis N., Tziallas G., Sanida F., “Riccati equation solution method for the computation of the solutions of  X+ATX-1A=Q and X-ATX-1A=Q”, The Open Applied Informatics Journal, vol. 3, pp. 22-33, 2009.

[24]Assimakis N., “Limiting properties of the doubling algorithm for solving the discrete time Riccati equation”, Contemporary Engineering Sciences , vol. 3, no. 1, pp. 17-23, 2010.

[25]Assimakis N., “Chandrasekhar type algorithms for the Riccati equation of Lainiotis filter”, Contemporary Engineering Sciences, vol. 3, no. 4, pp. 191-200, 2010.

[26]Assimakis N., Adam M., “A new author’s productivity index: p-index”,  Scientometrics, vol. 85, no. 2, pp. 415-427, DOI 10.1007/s11192-010-0255-z, 2010.

[27]Delibasis K., Kechriniotis A., Tsonos C., Assimakis N., “Automatic model-based tracing algorithm for vessel segmentation and diameter estimation”, Computer Methods and Programs in Biomedicine, vol. 100, pp. 108-122, 2010.

[28] Assimakis N, Adam M., “Lainiotis filter implementation via Chandrasekhar type algorithm”, Journal of Computations & Modelling, vol. 1, no. 1, pp. 115-130, 2011.

[29]Adam M., Assimakis N., Fotopoulou G., “On the Hermitian solutions of the matrix equation Xs+A*X-sA=Q”, Journal of Applied Mathematics & Bioinformatics, vol. 1, no. 2, pp. 109-129, 2011.

[30] Assimakis N., Adam M., Douladiris A., “Information Filter and Kalman Filter Comparison: Selection of the Faster Filter”, International Journal of Information Engineering, vol. 2, no. 1, pp. 1-5, 2012.

[31] Assimakis N., Adam M., “ On the convergence of the modified Riccati equation”, ISRN Signal Processing, 2012.

[32] Assimakis N., Adam M., Koziri M., Voliotis S., Asimakis K., “Optimal decentralized Kalman filter and Lainiotis filter”, accepted for publication, Digital Signal Processing, 2012.

[33] Assimakis N., Adam M., “Modified Riccati equation emanating from Lainiotis filter”, accepted for publication, International Journal of Information Engineering, 2012.

[34] Assimakis N, Adam M., Triantafillou C.,“Lainiotis filter, golden section and Fibonacci sequence”, accepted for publication, Signal Processing, 2012.

[35] Delibasis K., Kechriniotis A., Assimakis N.,“New closed formula for the univariate Hermite interpolating polynomial of total degree and its application in medical image slice interpolation”, accepted for publication, IEEE Transactions on Signal Processing, 2012.